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ABSTRACT

This paper develops a computational approach to multivariablc frequency domain curve
fitting, based on 2-norm minimization, The algorithm is specifically tailored to the iden-
tification of complex systems having a large number of parameters, and incluclcs  a sparse
matrix method for reducing computation and memory requirements on large problems.
The algorithm is also well-suited for identification of lightly damped systems such as flex-
ible structures. The overall approach is successfully demonstrated on a high-order nml-
tivariable  flexible structure experiment requiring the estimation of 780 parameters over a
100 Hertz bandwidth.

1. INTRODUCTION

Let  G(t) be a nU-input/nY-output  transfer function matrix in the complex variable &
where ~ can be chosen as any complex variable of interest (e.g., the Laplacc operator
s, the shift operator Z–l , or the delta operator 6 = (.z — 1)/7’, where T is the sampling
period). In order to allow a frequency domain interpretation, the complex variable f is itself,,
considered a function of a frequency variable w (e.g., ~ = jw, f = e–~WT,  ~ = (e~u~ – 1 )/7’,
for ( = s, 2–1, 6, respectively).

In this paper, the data ~ is assumed to be given by noisy values of the transfer function
mat rix evaluated over a grid of frequency points,

(J(lJi)  m G(((tii)) i = l)...,  N (1.1)

The goal in this paper is to find a transfer function estimate G which minimizes the 2-norm
of the error between the estimate and the data, i.e.,

(1.2)

where w(wi ) is a specified weighting function of frequency, and the Frobenious norm is
defined as,

11X11; = Tr{x”x} (1.3)

where “ * “ denotes complex conjugate transpose,

It is emphasized that the criteria (1 .2) represents an output error, and would be optimal
if statistically white noise entered at the output of the plant. Furthermore, the inverse of
the noise coloring profile (if known or estimated) can be used as a frequency weighting to
recover statistical optimality  in the more general colored noise case.
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Several S1S0 transfer function curve fitters are presently available in the literature. For
curve fitting in the Laplace s domain, an early least squares method can bc found in the
1959 work of Levy (1959). An implicit high frequency emphasis which distorted Levy’s
results was later noted by Sanathanan  and Koerner (1963) and an iterative method to
remove it appears in their 1963 paper. For convenience, their scheme is denoted here as
the SK iteration. Improvements to complex curve fitting came soon after by introducing
orthogonal polynomial bases (cf., Vlach 1969). The present state-of-the-art on the S1S0
problem (as assessed by hardware implementation on the Hewlett Packard analyzer), ap-
pears to be the method of Adcock (1987), which combines a Chebyshcv  polynomial basis
with the SK iteration. Related results for the S1S0 case can bc found in Spanos (1991)
(for Laplace operator s) and Bayard et. al. (1991) (for the shift operator z).

MIMO curve fitters are less plentiful in the literature. Two papers of note are by Lin
and Wu (1982), and Dailey and Lukich  (1987). Both of these papers contain algorithms
for curve fitting in the Laplace s domain using an SK iteration. The Dailey and Lukich
approach is somewhat more sophisticated since it incorporates a C!hebyshev polynomial
basis, and is essentially a multivariable version of Adcock’s approach. In the most recent
literature, robust identification methods have appeared which are applicable to frequency
domain data (SCC Gu and Khargonckar (1992) for overview and most general formula-
tion), Numerical examples indicate that such methods can give cxcellcnt  results for plants
with moderate damping, However, the main drawback is that worst-case bounds become
unrealistically large for lightly damped systems. Some practical modifications for lightly
damped systems have been proposed in Gu and Khargonckar (1993). However, further
research remains to be done in this area.

In contrast to the approaches mentioned above, the present paper performs MIMO fre-
quency domain identification by minimizing the 2-norm of the curve fit error (1.2). This
approach is specifically focused to support the identification of high order systems with
many parameters, and can provide very good results for lightly damped systems (cf., Ba-
yard 1992c, 1993). The algorithm is depicted in Fig. 1, and is based on a Gauss-Newton
(GN) iteration, initialized using the SK iteration. Both iterations require solving least
squares problems which are formulated to avoid solving normal equations. A sparse ma-
trix QR (or sparse matrix SVD) technique is developed which exploits the special block
structure of the problem and significantly reduces memory and computational require-
ments.  The overall approach is demonstrated on a real experimental data set involving a
multivariable  flexible structure.

2. BACKGROUND AND NOTATION

The transfer function matrix G(t) is considered to be in the form of the ratio of a matrix
numerator polynomial JV(~) and an nth-order  monic scalar denominator polynomial d(~),
i.e.,

(2.1)
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In order to allow the most flexibility in the approach, d and N are each written in terms
of polynomial basis p~(~) k = 0,..., n, as follows,

iv(() = g I?kpqf) (2.2a)
k=o

40 = 1 + (40 (2.2b)

a(() = ~ a~p~–l (~) (2.2C)
k= 1

Here, ~k E R“YX’U, k = O , . . . . ?Zb where nb equals  n or n – 1 depending on whether or not
a fccdforward  term exists on the plant G. The terms p~(()  , k = O, . . . . n are polynomials of
degree k in the complex variable ~ which can be chosen to improve the numerical properties
of the algorithm (see Sect. 6.).

The goal is to find a transfer function estimate G which minimizes the 2-norm of the
error (1.2) between the estimate and the data. The cost I’ can be expanded by substituting
(2.1) and (2.2) into (1.2) to give upon rearranging,

W2(bJj)

F =  f [1+  f(Ui)a(t(”i))12
~(Ldj) +  ~(bJj)g(Ldj)U(~ (LOj))  -  ~ 13~pk(~(Wj)) II: (2.3)

:=1 k=O

Since the Frobenious norm of a matrix is the sum-squared magnitudes of its entries, ex-
pression (2.3) can written in terms of its components as follows,

where,
~(~:)  =  {~Pm(U:)}

a = [al, az, ..., a~]T

b:~]Tb e m  = [bf’’, bfm,..,,

D~ = {b:m}; k = O ,...,  nb

$i4m(Wj)  = ‘i$(U:)~O(~(W:)  ),pl(<(LO:)), . . ..pn-l(~(Wi))]~  tm(~(Wi))

~(fJj) = ~(Wj)~O(~(Wj))j  pl(~(Uj)),  . . ..pn–l(f(LOj))]

~(~j) = !R{~(LJj)}

Z?(U:)  =  $?{ T)*(L.U:)~(LJj)}

?fJ(LUj)  = ~O(.f(W:)), pl(((LOj)), . . ..pn-l(((tij))]

(2,4)

(2.5a)

(2.5b)

(2.5c)

(2.5d)

(2,5e)

(2.5f)

(2.5g)

(2.5h)

(2.5i)
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for 1= l,..., ny; ‘m = l,..., nu; i == 1,...,  N

The expression (2,4) can be vectorimd and written in terms of real arithmetic to give

F  =  W(a)(y  –  HO)  2

2

where I I , 112 denotes the vector 2-norm, and

1°

TVS(a)  O . . . 0

W(a) = 0 TVS(a)  “o. ~

“. o
0 .,, O“ TVS(a)

TV= diag{w(q),  . . ..w(LoN)}

(2.6)

(2.7a)

(207b)

S(a) = diag
{/

1 1
1 +2r(q)a  + aTIt(wl)a’  ”””’ / 1 + 2T(w~)a + aTR(u~)a }

(2.7c)

‘=i.!o::.i
1= 1,...,7ZV;  n? = l,..., nti

‘=[:W ~=[y,]
(9= [bT, aT]T

b = [(bll)T,  (b12)T,  .,,, (bntn)T]T

(2.7d)

(2.7e)

(2.7f)

(2.7g)

(2.7h)

(2.7i)
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3. GAUSS-NEWTON ALGORITHM

While general unconstrained optimization methods can be used minimize I’ in (2.6), more
cfflcient  methods can be used which exploit the special structure of the problem. One such
mcthocl  is the Gauss-Newton (GN) algorithm (cf., Gill, Murray and Wright, 1981) which
is applicable to nonlinear least squares problems of

m~n l[j(tl)[[~

The GN method is applied to the present problem
into the form (3. 1 ) by the choice,

~(t?) = W(a)(y -

the form,

(3.1)

by noting that F in (2.6) can be put

He) (3.2)

The GN iteration is given by the following expression (Gill, Murry and Wright, 1981, page
134),

~~+] = argmjn ll~(d~)(~ – Ok) + j(O~)l\~ (3.3)

where J(6) is the Jacobian of j(~). Using (3.2), the expression for the Jacobian can bc
computed as,

J(8) = –VV(a)(H  + fi(0)) (3.4)

where,
o d]]

,[:1

. . . 0
0 0 A12

fi(o)= . “:” . . (3.5a). . .. . .
. . . 0 An,n.

0[1

r~(wl) + aTR(wl)

d~m = diag{e~m((?)}
rT (UZ) + aTIt(wz  )

(3.5b)

“ TrT(WN)  + a  R(UAT)

(
etm(d) = S2(a) Ytm - Qbem - @~ma

)
(3.5C)

Substituting (3.2) and (3.4) into the argument of (3.3) gives,

~(~~)(~  – ~~) + ~(0~) = –W(a~)(H  + fi(@))(O  – @) + W(ak)(y  – HO~)

= W(a~)[(fi(8~)O~  + y) - (H+ ~(0~))0] (3.6)

Finally, substituting (3,6) into (3.3) gives the GN iteration in terms of the following se-
quence of reweighted of least squares problems,

Gauss-Newton Iteration:

@+l = arg m~n VV(ak)(y~(Ok)  -  H~(Ok)6)  ~ (3.7)
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where,
H@) = (H + I?@))

vG(@) = (@k)@ + y)
A kcy observation is the sparse structure of the matrix HG,

:’

We...  o @ll +~11
“ . : @12 +A12

HG(t?)=  0 .Q i,. ~
.,

0 0 0 ~ @“u”u +AW~U

4. INITIALIZATION VIA SK ITERATION

(3.8a)

(308b)

(3.9)

Since the Gauss-Newton algorithm is a descent method, it will generally only converge to
a local minimum of (2.6). Hence, the starting value for 0 is crucial. A special algorithm is
cliscussed  in this section to provide a good starting value.

The method to bc used, is a multivariablc generalization of the algorithm of Sanathanan
and Kocrner  (1963) algorithm discussed in Bayard (1992 b). It is defined by the following
“SK iteration” composed of a sequence of reweightcd  least squares problems,

SK Iieraiion:

#+1 = arg m~n W(a~)(y  –  Ho) 2 (4.1)
2

with initial condition,
0° = [(b”)~,  (aO)T]T  = O (4.2)

Remark 1. When the plant has lightly damped resonances, the weighting W(ak ) in (4,1)
tends to bc very peaked in the vicinity of the resonance frequencies. This can act as a
“hole-punch” to essentially pick out only a small subset of data points, leaving an underde-
tcrmincd  systcm of equations, It was found in Bayard et. al. (1991) that smoothing W(a~ )
slightly as a function of frequency tends to offset this effect and improve the numerical
conditioning of the problem. ■

Remark 2. A crucial observation relevent  to identification of high-order systems is that
the SK and GN iterations are both implemented here without solving normal equations. m

Remark 3. The model order is generally not known a-priori, and in practice it is useful
to try several different orders to obtain the best results. Alternatively, one can intention-
ally overparamet rize the model, The extra dynamics introduced by overparametrization
can then be systematically removed (without polynomial factorization) using the SSFD
algorithm given in Bayard (1992 c). Interestingly, it has been shown in Bayard (1993) that
the extra dynamics from overparametrizing in the shift operator ~ = z–] tend to come in
stably, while the dynamics from overparametrizing the s and 6 operators tend to come in
unstably. Modifications of the s and 6 operators which overparametrize stably are given
in Bayard (1993), but are beyond the scope of this discussion. ~
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5. SPARSE MATRIX QR (AND SVD) METHOD

A kcy observation is that H in the SK iteration and HG in the Gauss-Newton iteration,
(i.e., (2.7d)  and (3.9), respectively), have identical block structure i.e.,

rQ 0 . . . 0 XII

1: ~H= OV””. :X2
“. “. .0:

0 . . . OWXM I

(5.1)

Here M = nvnu, and the X: are generic blocks,  depending UPOII which algorithm iS being
used. Note that the index i on Xi runs sequentially as i = 1, . . . . M to avoid the notational
complexities of double indexing used earlier in (2.7d)  and (3.9).

The special block structure of (5.1) will be exploited in this section to develop a sparse
matrix QR and SVD factorization to SOIVC the least squares problems arising in both the
SK and GN iterations. Towards this end, both least squares problems can bc put into the
general form,

min I]y – H611~ (5.2)

where H has the block structure in (5.1), and vectors 0 and y are partitioned compatibly
with H as,

The least squares problem (5.2) can be solved using the following sequence of steps.

Sparse  Matrix QR/Leasi  Squares Algorithm:

Step 1: Perform QR factorization on IJ to give,

Step 2: Form Q1 = 1 – Q@, Q~, and compute the quantity V where)

QLX1

[1

v _  QLX2— .

QLXM

Step 3: Perform QR factorization on V to give,

[1v = [Q., Qu,l ~

7

(5.3)

(5.4a)

(5.4b)

(5.4C)



Step 4: Form z as follows,
z= Q;ly (5.4d)

and backsolve triangular system for a,

Rua = z (5.4C)

Step5:  Forj=l,...,  M: .
zj = Q~l yj

(5.4f)

backsolve for b j

R$,bj E zj – Q~lXja (5.4g)

AII explicit QR factorization of the sparse matrix H is given in the next theorem.
Although the full factorization is never formed explicitly, this result serves as a proof of
the above algorithm.

Theorem 1. Sparse Matrix QR Factorization:

Using the quantities computed in Steps 1-3 above, the QR factorization of the sparse
matrix H with the block structure (5.1) is given by,

1“
. “. “. o
0 . . . 0 Q* I J

Rll =

1: ~ -

0 RI, ‘“. ~
.“. o

0 . . . 0 R+

Q&G

IiQ&X2
R12 = . ; R22 = Rv

Q~lXM

(5.5)

(5.6a)

(5.6b)

(5.6C)

Proof R is triangular by construction. It can be readily verified that QR = H, and

QTQ = 1 as desired. -
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Since Q in (5.5) is not square, Theorem 1 provides a “skinny” QR factorization in the
sense of Golub and Van Loan (1989). It is noted that only “skinny’) QR factorization
are required in Steps 1 and 3. of the sparse matrix QR algorithm i.e., the quantities QV2

and Qy,z are not used. Hence their computation should be avoided to reduce storage and
computational requirements.

Remark 4. Sparse Matriz SVD Atgorithm:  Theorem 1 (and the previous algorithm) can
also bc used for sparse matrix singular value decomposition (SVD),  by noting that the
SVD decomposition H = USVT is of the form H = QR where Q = U is an orthogonal
matrix and R is defined as R = IIVT. Of course, in this case R is no longer triangular and
the backsubstitution  in Steps 4 and 5, can be replaced by inversion of 1? using the relation
~-l = V2-I.  ■

6. IDENTIFICATION USING THE Z-l, s, and 6 OPERATORS

Choices of polynomial basis are discussed in Bayard (1992b)  for curve fitting in the z-1,
s, and 6 operators. These choices are briefly outlined below.

2-1 - Operator

s - Operator

Tk(~) with signs flipped on powers 2,6,10...; for k even,
(6.2)‘k(t)  = { Tk(~) with signs flipped on powers 3,7,11,..; for k odd

( = .$/Wm.. = jiZ ~ = w/wmaz; ~ ~ [0,1] (6.3)

where the Chebychev  polynomials are generated as To(z) = 1, TI (x) = z and Tk (x) =
2xTk_l  – Tk-z.

6- Operator

(ej@ -1 )
f = ~/%l.z = * ; ~ = ~/%cIz;  ~ c [0,1] (6.4)

‘maz

For fast sampling ~ = j~. Hence powers of ~ behave like powers of j~ and the basis can
bc chosen based on the Chebyshev polynomials as given in (6.2).

70 EXPERIMENTAL STUDY

This example demonstrates the curve fitting algorithm (in the shift operator ~ = z-I),
on real experimental data taken from the JPL Advanced Reconfigurable  Control Testbed
shown in Fig, 2. A 4-input, 3-output transfer function is considered, where each actuator
is an active strut, and each sensor is an accelerometer. The frequency response data is
obtained using a 512 Schroeder phased sum-of-sinusoids input design at a sampling rate
of 200 Hertz (see Bayard (1992a) for background on estimation with Schroeder-phased
inputs). The magnitude response is shown as the dashed line in Fig. 3 (phase is available
but not shown).
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The model order is chosen as n = 60, and a uniform weighting w(~i  ) = 1 is used.
Since there are 12 numerator polynomials and 1 denominator polynomial, this requires the
simultaneous estimation of 780 parameters. The SK algorithm is iterated 12 times, and
then the GN algorithm is iterated 3 times, both algorithms using the sparse matrix SVD
met hod developed in Sect. 5 (cf., Remark 4). A magnitude plot of the identified model is
shown in Fig. 3 (solid line) superimposed on the response data (dashed line). The model
is stable, and is seen to match the data well in all channels, and over the full 100 Hertz
bandwidth,

8. CONCLUSIONS

A multivariable curve fitter is proposed for frequency domain identification. The approach
is based on 2-norm minimization, uses an SK iteration to initialize the GN algorithm,
avoids solving normal equations, and utilizes a sparse matrix QR (or alternatively SVD
) method for efficiently solving the underlying SK ancl GN iterations, The method is
applicable to high-order multivariable systems and works well on lightly damped systems.

The overall approach was successfully demonstrated on real experimental data from a
4-input/3-output multivariable flexible structure requiring the simultaneous estimation of
780 parameters, and leading to a multivariable transfer function fitting the data accurately
over a 100 Hertz bandwidth. The sparse matrix SVD method was indispensable for this
problem, reducing RAM memory requirements by better than an order of magnitude (from
approximately 60 Megabytes to 6 Megabytes) and reducing computation time two orders
of magnitude (from approximately 30 hours to 20 minutes on a Spare 2 workstation).
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Figure 1.

Figurc2.

Figure 3.

FIGURES

Algorithm for multivariable frequency domain identification

JPL Advanced Reconfigurab]e  Control (ARC) tcstbcd

Multivariable experimental identification results: Raw experimental frcclucncy  data
(dashed); Identified 780 parameter, 4-input/3-output transfer function rnodcl  G(z-’  ) =
lV(z-l)/d(z-l  ) where n = 60, (solid).
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Data: {~(wi); i =1, . . . . NJ

ikfodel Order  : n, nb
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SK - ITERATION

w, H, y
d+’ = a,gmjn II W(ak)(V  - HO) II; —>

o

bBj, j = 0,..., nb
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(?

SPARSE MATRIX
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